Quantification of excitatory amino acid uptake at intact glutamatergic synapses by immunocytochemistry of exogenous D-aspartate.
نویسندگان
چکیده
To study the localization and efficiency of glutamate/aspartate membrane transport in the vicinity of intact glutamatergic synapses, the avascular lamprey spinal cord was incubated with D-aspartate, a metabolically inert transporter substrate. The exogenous D-aspartate was localized by immunocytochemistry after aldehyde fixation. Incubation at 50 or 500 microM D-aspartate for 1 hr caused a prominent D-aspartate labeling of glial processes at glutamatergic synapses, while presynaptic axons and postsynaptic dendrites remained unlabeled. The glial processes surrounding glutamatergic sensory axons with a predominantly tonical firing pattern contained significantly higher levels of D-aspartate than did processes surrounding glutamatergic reticulospinal axons, which fire rarely and in brief bursts. Preparations incubated for 10 hr with 500 microM D-aspartate showed D-aspartate immunolabeling in glia as well as in the two types of glutamatergic axon, but no evidence was obtained for uptake into synaptic vesicles. Nor was such evidence obtained after high-frequency electrical stimulation. The observations suggest that excitatory amino acids delivered diffusely to the extracellular space in the intact CNS are transported almost exclusively into glia. The avid uptake in glial processes, combined with their spatial arrangement around glutamatergic synapses, appears to limit the access of exogenous D-aspartate to the nerve terminal glutamate/aspartate transporter. In physiological conditions, the glial processes are likely to impede the exchange of glutamate between the synaptic cleft and the rest of the extracellular space. The transport was more efficient in glial processes located near tonically active synapses than in ones located near synapses releasing transmitter sporadically. D-Aspartate is not a substrate of vesicular glutamate transport sites at these intact synapses.
منابع مشابه
Vesicular Release of L- and D-Aspartate from Hippocampal Nerve Termi- nals: Immunogold Evidence
Glutamate is established as the most important excitatory transmitter in the brain. The transmitter status of aspartate is debated. There is evidence that aspartate is released from nerve terminals by exocytosis. However, release through excitatory amino acid transporters (EAATs) could be an alternative mechanism. We further investigated this by use of light and quantitative electron microscopi...
متن کاملThe glutamate-aspartate transporter GLAST mediates glutamate uptake at inner hair cell afferent synapses in the mammalian cochlea.
Ribbon synapses formed between inner hair cells (IHCs) and afferent dendrites in the mammalian cochlea can sustain high rates of release, placing strong demands on glutamate clearance mechanisms. To investigate the role of transporters in glutamate removal at these synapses, we made whole-cell recordings from IHCs, afferent dendrites, and glial cells adjacent to IHCs [inner phalangeal cells (IP...
متن کاملD-Serine and Serine Racemase Are Associated with PSD-95 and Glutamatergic Synapse Stability
D-serine is an endogenous coagonist at the glycine site of synaptic NMDA receptors (NMDARs), synthesized by serine racemase (SR) through conversion of L-serine. It is crucial for synaptic plasticity and is implicated in schizophrenia. Our previous studies demonstrated specific loss of SR, D-serine-responsive synaptic NMDARs, and glutamatergic synapses in cortical neurons lacking α7 nicotinic ac...
متن کاملEffects of intrathecal glutamatergic drugs on locomotion. II. NMDA and AP-5 in intact and late spinal cats.
In a previous article, we have shown that, in cats, intrathecal injections of N-methyl-D-aspartate (NMDA) in the first few days after spinalization at T13 do not induce locomotion as in many other spinal preparations. This is in contrast to alpha-2 noradrenergic receptor stimulation, which can trigger locomotion at this early stage. However, it is known that spinal cats do recover spontaneous l...
متن کاملFunctionally intact glutamate-mediated signaling in bipolar cells of the TRKB knockout mouse retina.
In the juvenile trkB knockout (trkB-/-) mouse, retina synaptic communication from rods to bipolar cells is severely compromised as evidenced by a complete absence of electroretinogram (ERG) b-wave, even though the inner retina appears anatomically normal (Rohrer et al., 1999). Since it is well known that the b-wave reflects light-dependent synaptic activation of ON bipolar cells via their metab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 15 6 شماره
صفحات -
تاریخ انتشار 1995